Media Manipulation and Bias Detection
Auto-Improving with AI and User Feedback
HonestyMeter - AI powered bias detection
CLICK ANY SECTION TO GIVE FEEDBACK, IMPROVE THE REPORT, SHAPE A FAIRER WORLD!
None
Caution! Due to inherent human biases, it may seem that reports on articles aligning with our views are crafted by opponents. Conversely, reports about articles that contradict our beliefs might seem to be authored by allies. However, such perceptions are likely to be incorrect. These impressions can be caused by the fact that in both scenarios, articles are subjected to critical evaluation. This report is the product of an AI model that is significantly less biased than human analyses and has been explicitly instructed to strictly maintain 100% neutrality.
Nevertheless, HonestyMeter is in the experimental stage and is continuously improving through user feedback. If the report seems inaccurate, we encourage you to submit feedback , helping us enhance the accuracy and reliability of HonestyMeter and contributing to media transparency.
Exaggerating or sensationalizing events to attract attention.
Phrases like 'a throng quickly gathered' and 'His Airness has long retired but remains uber-popular' add a sensational tone to the article.
Replace 'a throng quickly gathered' with 'a small crowd gathered'.
Replace 'His Airness has long retired but remains uber-popular' with 'Michael Jordan, though retired, remains popular among fans.'
Using emotional language to influence the reader's feelings.
Fan reactions such as 'What a legend!!! Best sports person from the 90’s!!!' and 'This young man is a fighter, persistent and getting better every day.' are emotionally charged.
Present fan reactions in a more neutral tone, such as 'Fans expressed admiration for both Jordan and Pina.'
- This is an EXPERIMENTAL DEMO version that is not intended to be used for any other purpose than to showcase the technology's potential. We are in the process of developing more sophisticated algorithms to significantly enhance the reliability and consistency of evaluations. Nevertheless, even in its current state, HonestyMeter frequently offers valuable insights that are challenging for humans to detect.